Heritage High School – Distance Learning Mr. Leong's Algebra 1 Assignment Packet May 18 – May 22

Due Date: Tuesday, May 26 by 9:00am

Late work will not be accepted

Notes: Included in this packet are some note taking templates.

- Solving Quadratics using the Quadratic Equation

- Determining the number of solutions using the Discriminant

Those with internet access can complete the notes as you watch the YouTube videos

linked below.

https://youtu.be/ySRlyd3oZrl https://youtu.be/d4yBbAzPlsU

Students with limited internet access can use the teacher's notes at the end of this

packet.

Reading: Textbook p.516-520 (hint: use the Dynamic e-book on Clever to see video tutorials)

Exercises: Textbook p.521 #10, 11, 14, 15, 18, 20, 37, 39, 40, 42-46, 74

Please submit your answers through Clever and the Big Ideas Math site.

Those with limited internet access can email me a scan/photograph of their work. Those without internet access may submit paper copies to the main office on

Monday from 12-3pm.

Videos: Here are some extra videos that may help you with the textbook exercises.

https://bit.ly/2Z5aGn5
https://bit.ly/2Z5oSrv
https://bit.ly/2Z5OSrv
https://bit.ly/2WT086c
https://bit.ly/2X0yQN6
https://bit.ly/2X0yQN6
https://bit.ly/2WSn7jm
https://bit.ly/2XdGq7h

More Videos: These YouTube videos show some alternatives to the Quadratic Formula.

https://youtu.be/ZBalWWHYFQc https://youtu.be/MHX086wKeDY

Tools: Here is a PowerPoint on the Quadratic Formula.

https://ca01001129.schoolwires.net/Page/15726

Contact: leongc@luhsd.net

925.634.0037 ext. 6305

Remind @fnctn

Zoom office hours (TBA)

Accessing Big Ideas Through Clever

The preferred method of completing assignments is electronically through Clever.

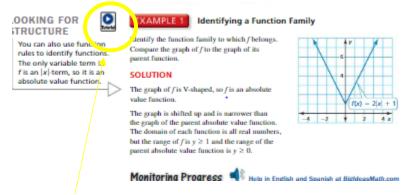
To access your assignments:

- Go to "clever.com/in/luhsd"
- Log in using your username and password as your student ID number
- Scroll down to "Math" where you will see the Big Ideas Math logo, click on "Big Ideas Math"
- If you are taking multiple math classes, you may need to select the book for the course you are working
- In the middle there is a tab that says "Assignments," click on "Assignments"

- Choose an assignment to work on from the list. Click the pencil/enter to start the assignment.
- **WARNING!!!!** Clever does NOT automatically save and submit progress. Once you finish the last problem in an assignment, be sure to <u>click your name in the top-right corner and click "Submit"</u> to turn your assignment in.

To access online tutorial videos:

- Go to "clever.com/in/luhsd"
- Log in using your username and password as your student ID number
- Scroll down to "Math" where you will see the Big Ideas Math logo, click on "Big Ideas Math"
- If you are taking multiple math classes, you may need to select the book for the course you are working
- Click on "Student Dynamic ebook"
- You can use the "Contents" tab on the left to get to the section you wish to view
- In the section you will see examples that look similar to the below pic:



The blue circle with triangle indicates there is a tutorial video for that example. Click the icon to view.

C - 1!	٠	E 4:		0	P1-
Solving	Quaaratic	Equations	using the	Quadratic	Formula

Name:	
Date:	

You can find the solutions to any quadratic equation in standard form $(ax^2 + bx + c)$ using

The Quadratic Formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Ex 1: Solve $2x^2 - 5x + 3 = 0$ using the quadratic formula.

Identify <i>a, b,</i> and <i>c</i> .
Substitute those values into the Quadratic Formula
Simplify inside the radical. Be sure to follow order of operations!
Evaluate the square root.
Reduce the fractions if possible. Identify both solutions.

Ex 2:
$$x^2 - 6x + 5 = 0$$

Ex 3:
$$12x^2 - 4x - 5 = 0$$

Ex 4:
$$-3x^2 + 2x + 7 = 0$$

Ex 5:
$$4x^2 - 4x = -1$$

You Try!

1:
$$-x^2 + 8x = -12$$

2:
$$3x^2 = 10x - 9$$

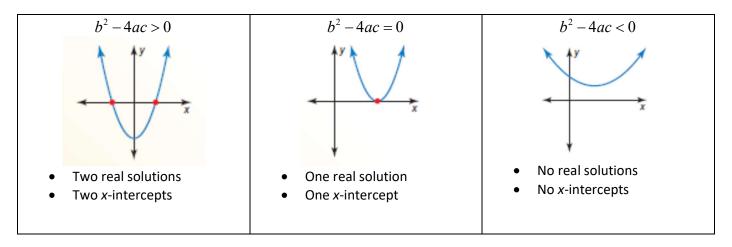
$$3: -3x^2 - 6x - 9 = 0$$

4:
$$2x^2 - 18 = 0$$

The expression under the radical in the Quadratic Formula, is called **the discriminant**.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 The Discriminant

Interpreting the discriminant



Determine the number of real solutions for each quadratic equation.

Ex 1:
$$x^2 + 8x - 3 = 0$$

Identify <i>a, b,</i> and <i>c.</i>
Substitute those values into the discriminant of the Quadratic Equation
Simplify. Be sure to follow order of operations!
Determine the number of solutions (x-intercepts). $b^2-4ac>0$ Two solutions (two x-intercepts) $b^2-4ac=0$ One solution (one x-intercept) $b^2-4ac<0$ No solutions (no x-intercepts)

Ex 2:
$$9x^2 + 1 = 6x$$

You Try!

3:
$$6x^2 + 2x = -1$$

4:
$$-x^2 + 4x - 4 = 0$$

Use the discriminant to find the number of x-intercepts.

Ex 1:
$$y = x^2 - 14x + 2$$

Ex 2:
$$f(x) = 6x^2 + 2x + 1$$

You Try!

3:
$$y = -x^2 + x - 6$$

4:
$$f(x) = x^2 - x$$

You can find the solutions to any quadratic equation in standard form $(ax^2 + bx + c)$ using

The Quadratic Formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

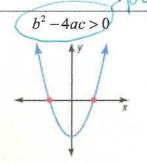
Ex 1: Solve $2x^2 - 5x + 3 = 0$ using the quadratic formula.

a=2 b=-5 C=3	Identify a, b, and c.
$X = -(-5) \pm \sqrt{(-5)^2 - 4(2)(3)}$ $2(2)$	Substitute those values into the Quadratic Formula
$X = \frac{5 \pm \sqrt{25 - 24}}{4} = \frac{5 \pm \sqrt{1}}{4}$	Simplify inside the radical. Be sure to follow order of operations!
$X = \frac{5 \pm 1}{4}$	Evaluate the square root.
$X = \frac{5+1}{4} = \frac{6}{4} = \frac{3}{2}$ $X = \frac{5-1}{4} = \frac{4}{4} = 1$	Reduce the fractions if possible. Identify both solutions.
(21.5	

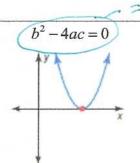
The expression under the radical in the Quadratic Formula, is called the discriminant.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \leftarrow \text{The Discriminant}$$

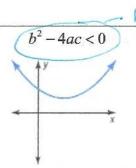
Interpreting the discriminant



- Two real solutions
- Two x-intercepts



- One real solution
- One x-intercept



- No real solutions
- No x-intercepts

Determine the number of real solutions for each quadratic equation.

Ex 1:
$$x^2 + 8x - 3 = 0$$

102-4ac

a = 1 b = 8 c = -3	Identify a, b, and c.
(8)2-4(1)(-3)	Substitute those values into the discriminant of the Quadratic Equation
64 +12	Simplify. Be sure to follow order of operations!
76 - positive discriminant 2 real solutions	Determine the number of solutions (x-intercepts). $b^2 - 4ac > 0$ Two solutions (two x-intercepts) $b^2 - 4ac = 0$ One solution (one x-intercept) $b^2 - 4ac < 0$ No solutions (no x-intercepts)

Ex 2:
$$9x^2 + 1 = 6x$$

 $- \cancel{\omega} \times - \cancel{\omega} \times$

$$(-4)^2 - 4(9)(1)$$

$$34 - 34$$

$$= 0$$

You Try!

3:
$$6x^2 + 2x = -1$$

 $+1 + 1$
 $6x^2 + 2x + 1 = 0$
 $0 = 6 + 6 = 2 + 6 = 1$
 $(2)^2 - 4(4)(1)$
 $-36 = -32$ 0 real solutions

4:
$$-x^2 + 4x - 4 = 0$$

 $a = -1$ $b = 4$ $c = -4$
 $(4)^2 - 4(-1)(-4)$
 $14 - 14$
 $= 0$

pro griggito irgefer a un la calla e diggitalization l

Use the discriminant to find the number of x-intercepts.

Ex 1:
$$y = x^2 - 14x + 2$$

$$01=1 b=-14 c=2$$

 $(-14)^2 - 4(1)(2)$
 $196-8$
 $=188$
 $12 real solutions$

Ex 2:
$$f(x) = 6x^2 + 2x + 1$$

$$a = 4b = 2c = 1$$

 $(2)^2 - 4(6)(1)$
 $4 - 24$
 $= -20$
To real solutions

You Try!

3:
$$y = -x^2 + x - 6$$

$$0 = -1 \quad b = 1 \quad c = -6$$

$$(1)^2 - 4(-1)(-6)$$

$$1 - 24$$

$$= -23$$

$$0 \quad real \quad solutions$$

4:
$$f(x) = x^2 - x$$

$$a=1$$
 $b=-1$ $c=0$
 $(-1)^2-4(1)(0)$
 $1-0$
=1
 $1 = 1$

METHOD	MOST EFFICIENT WHEN:
Zero Product Rule	<u>USE</u> : If the equation looks <u>easy to factor</u> , then this is the most efficient
$a \cdot b = 0$	method. Example: $x^2 + 8x + 15 = 0$ (x+3)(x+5) = 0
Solving by Factoring	DO NOT USE: If equation is not factorable, or does not appear easy to factor.
Using Square Roots	<u>USE</u> : If the equation has a variable that is involved in a <u>perfect square</u> and
$\sqrt{\left(x-m\right)^2} = \pm \sqrt{v}$	the perfect square is easy to isolate. Example: $(x-7)^2 = 27$ $\sqrt{(x-7)^2} = \pm \sqrt{27}$
	DO NOT USE: If the equation is a trinomial and creating a perfect square doesn't appear easy to do.
Completing the Square	<u>USE</u> : If the equation does not look factorable, and $a = 1$, and b is even and you'd rather not use the quadratic formula. Example: $x^2 - 8x + 1 = 7$
$1x + bx + \left(\frac{b}{2}\right)^2 = v + \left(\frac{b}{2}\right)^2$	DO NOT USE: If b is odd or if all terms are not divisible by a .
$\left(x - \frac{b}{2}\right)^2 = d$	
Quadratic Formula	<u>USE</u> : Can be used for <u>any quadratic equation</u> .
ax + bx + c = 0 then	DO NOT USE: If it is easier to solve using another method.
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	

Solve each equation using any method. Leave your answer in exact, simplified form. Explain your choice of method.

1.
$$x^{2}-10x=1$$

 $X^{2}-10x+25=1+25$
 $(x-5)^{2}=26$
 $\sqrt{(x-5)^{2}}=\pm\sqrt{26}$
 $x-5=\pm\sqrt{26}$
 $x=5\pm\sqrt{26}$

Completing the Square because b was even and the lead coefficient was already 1.

$$Q=2 \quad 2.2x^{2}-13x-24=0$$

$$b=-13$$

$$C=-24 \quad X = \frac{-13 \pm \sqrt{(-13)^{2}-4(2)(-24)}}{2(2)}$$

$$X=13\pm\sqrt{169+192}=13\pm\sqrt{361}$$

$$X=13\pm19 \quad 4$$

$$Y=13\pm19 \quad 4$$

$$Y=13\pm19 \quad 4$$

$$Y=13\pm19 \quad 4$$

Quadratic Formula because $a \neq 1$, bis odd and I don't know if it's factorable.

3.
$$x^2 + 8x + 12 = 0$$
 $(x+6)(x+2) = 0$
 $(x+6)-2$

Method: Factored & Zero Product Rule because factoring was so easy.

4.
$$X^{2} - 7X = 30$$
 $X^{2} - 7X - 30 = 0$
 $X^{2} - 7X - 30 = 0$

Method:

Same!

5.
$$9 \times^{2} - 5 = 4$$

$$9 \times^{2} = 9$$

$$\times^{2} = 1$$

$$\sqrt{2} = 1$$

$$\sqrt{2} = 1$$

$$\sqrt{2} = 1$$

6,
$$\frac{1}{2}(x-y)(2x+3)=0$$

 $(x-y)(2x+3)=0$
 $(x-y)(2x+3)=0$

Method: Zero Product
Rule because it
was already = 0 and
factored.

Method: Square Root because there was a simple perfect square that was easy to isolate,

Now feel free to start your homework on this page: p.521 #38 - 46 all

7.
$$\int (x-9)^2 = \int \int x-9 = \pm \int \int x-9 = \pm \int \int x-9 = \pm \int \int x-9 = 1$$
 $x = 9 \pm 1$
 $x = 9 \pm 1$
 $x = 9 \pm 1$

Method: Square Root Method because there was already an isolated perfect square.

X=10